How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds.

نویسندگان

  • Edith M Arnold
  • Samuel R Hamner
  • Ajay Seth
  • Matthew Millard
  • Scott L Delp
چکیده

The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle-tendon dynamics to calculate the lengths and velocities of muscle fibers from electromyographic recordings of 11 lower limb muscles and kinematic measurements of the hip, knee and ankle made as five subjects walked at speeds of 1.0-1.75 m s(-1) and ran at speeds of 2.0-5.0 m s(-1). We analyzed the simulated fiber lengths, fiber velocities and forces to evaluate the influence of force-length and force-velocity properties on force generation at different walking and running speeds. The simulations revealed that force generation ability (i.e. the force generated per unit of activation) of eight of the 11 muscles was significantly affected by walking or running speed. Soleus force generation ability decreased with increasing walking speed, but the transition from walking to running increased the force generation ability by reducing fiber velocities. Our results demonstrate the influence of soleus muscle architecture on the walk-to-run transition and the effects of muscle-tendon compliance on the plantarflexors' ability to generate ankle moment and power. The study presents data that permit lower limb muscles to be studied in unprecedented detail by relating muscle fiber dynamics and force generation to the mechanical demands of walking and running.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait.

Humans walk and run over a wide range of speeds with remarkable efficiency. For steady locomotion, moving at different speeds requires the muscle-tendon units of the leg to modulate the amount of mechanical power the limb absorbs and outputs in each step. How individual muscles adapt their behavior to modulate limb power output has been examined using computer simulation and animal models, but ...

متن کامل

Muscle mechanical advantage of human walking and running: implications for energy cost.

Muscular forces generated during locomotion depend on an animal's speed, gait, and size and underlie the energy demand to power locomotion. Changes in limb posture affect muscle forces by altering the mechanical advantage of the ground reaction force (R) and therefore the effective mechanical advantage (EMA = r/R, where r is the muscle mechanical advantage) for muscle force production. We used ...

متن کامل

On the ascent: the soleus operating length is conserved to the ascending limb of the force-length curve across gait mechanics in humans.

The region over which skeletal muscles operate on their force-length (F-L) relationship is fundamental to the mechanics, control and economy of movement. Yet surprisingly little experimental data exist on normalized length operating ranges of muscle during human gait, or how they are modulated when mechanical demands (such as force output) change. Here we explored the soleus muscle (SOL) operat...

متن کامل

Effect of reduced gravity on the preferred walk-run transition speed.

We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides ...

متن کامل

Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.

The mechanisms that govern the voluntary transition from walking to running as walking speed increases in human gait are not well understood. The objective of this study was to examine the hypothesis that plantar flexor muscle force production is greatly impaired at the preferred transition speed (PTS) due to intrinsic muscle properties and, thus, serves as a determinant for the walk-to-run tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 216 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2013